Miyamoto, M. \& Takeda, H. (1984). Am. Mineral. 69, 711-718.
Mulhausen, C. \& Gordon, R. G. (1981). Phys. Rev. B, 23, 900-923.
Orgel, L. E. (1961). An Introduction to Transition Metal Chemistry: Ligand Field Theory. London: Methuen.
Parker, S. C. (1982). PhD thesis, Sir Christopher Ingold Laboratories, Univ. College, London.
Pauling, L. (1947). J. Am. Chem. Soc. 69, 542-553.
Post, J. E. \& Burnham, C. W. (1986). Am. Mineral. 71, 142-150.
Prewitt, C. T., Shannon, R. D., Rogers, D. B. \& Sleight, A. W. (1969). Inorg. Chem. 8, 1985-1993.

Price, G. D. \& Parker, S. C. (1984). Phys. Chem. Miner. 10, 209-216.
Rice, C. E. \& Robinson, W. R. (1977). Acta Cryst. B33, 13421348.

Sasaki, S., Prewitt, C. T., Sato, Y. \& Ito, E. (1982). J. Geophys. Res. 87, 7829-7832.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Smyth, J. R. \& Hazen, R. M. (1973). Am. Mineral. 58, 588-593.
Speer, J. A. \& Gibes, G. V. (1976). Am. Mineral. 61, 238-247.
Takahashi, I., Onodera, A. \& Shiozaki, Y. (1987). Acta Cryst. C43, 179-182.
Tossell, J. A., Vaughan, D. J. \& Johnson, K. H. (1973). Nature (London) Phys. Sci. 244, 42-45.
Vincent, M. G., Yvon, K. \& Ashienazi, J. (1980). Acta Cryst. A36, 808-813.
Vincent, M. G., Yvon, K., Grüttner, A. \& Ashkenazi, J. (1980). Acta Cryst. A36, 803-808.

Waldmann, M. \& Gordon, R. G. (1979). J. Chem. Phys. 71, 1325-1329.
Wechsler, B. A. \& Prewitt, C. T. (1984). Am. Mineral. 69, 176-185.
Wechsler, B. A. \& von Dreele, R. B. (1989). Acta Cryst. B45, 542-549.

Acta Cryst. (1992). B48, 622-627

Calculated Intensities of Electron Waves Diffracted from Ti-14 wt\% Mo Alloy Containing ω-Phase Crystals

By M. Await, H. Hashimoto, E. Sukedai and F. Akao
Faculty of Engineering, Okayama University of Science, Ridai-cho 1-1, Okayama 700, Japan

(Received 22 January 1991; accepted 6 March 1992)

Abstract

The amplitudes and intensities of electron waves diffracted from a Ti-14 wt \% Mo alloy of β-phase containing ω-phase slabs of various thicknesses and at different depths were calculated. The intensities of the forbidden reflections $1 / 3 \overline{1} 2 \overline{1}, 2 / 3 \overline{1} 2 \overline{1}$ and 121 from the ω_{1}-phase, which is one of the four variants of the ω-phase, are less than 1.0×10^{-5} even for a thickness of $40 \AA$. However, when an ω_{1}-phase of that thickness is included in a crystal of the β-phase at a depth of $80 \AA$, the intensity of the forbidden reflections increases to about 1.0×10^{-2} at the bottom surface of the ω_{1}-phase. The amplitudes of the $\overline{1} 0 \overline{1}$ and $2 / 3 \overline{1} 2 \overline{1}$ waves are proportional to the distance of the ω_{1}-phase from the top surface and the thickness of that in the β-phase, respectively. When ω_{1} - and ω_{2}-phases overlap in the β-phase, extra spots such as $1 / 3 \overline{1} 0 \overline{1}, 2 / 3 \overline{1} 0 \overline{1}, 1 / 3020$ and $2 / 3020$ are excited at the top surface of the lower variant.

1. Introduction

Since the first observation of the ω-phase formed in aged $\mathrm{Ti}-\mathrm{Cr}$ alloys (Frost, Parris, Hirsch, Doig \& Schwartz, 1954), many studies using electron diffraction patterns and electron microscope images have been reported in other alloy systems (de Fontaine,

0108-7681/92/050622-06\$06.00

Paton \& Williams, 1971; Sass, 1972). Sukedai \& Hashimoto (1989) showed that the projection of the ω_{1} - and ω_{2}-phases on the ($10 \overline{1}$) plane has an ellipsoidal shape by taking the dark-field images from corresponding diffraction spots. However, the $\{111\}$ cross section which is perpendicular to the line of apsides of the projected ω-phases within a β-phase has not been studied directly. Even with the crosssectional observation technique (Marcus \& Sheng, 1983), which can be carried out by cutting the specimens in the preferred direction with a diamond saw after molding with epoxy resin and then thinning by ion milling, the structure of the cross section could not be investigated. This is due to the fact that, in the cross-sectional direction, the ω-phases concerned do not produce any characteristic diffraction spots, or any contrast in the electron microscope images because the displacement vectors of atoms \mathbf{b}, which produce the ω-phases, become parallel to the incident beam. However, calculations of the diffracted wave intensity and of the image contrast in the [101] direction as a function of the thickness and the depth of the ω_{1} - and ω_{2}-phases can be used to estimate their thicknesses and positions, and also to understand the mechanism of the appearance of the forbidden reflections.
In this paper, the intensities of diffracted waves for specimens with various types of combination of ω -

[^0]and β-phase slabs are calculated using the dynamical theory of electron diffraction (Cowley \& Moodie, 1957; Goodman \& Moodie, 1974) in order to understand the behaviour of diffracted waves due to ω and β-phases.

2. Model structure and calculation

Calculations were carried out for specimens of Ti$14 \mathrm{wt} \%$ Mo alloy which were quenched into water from 1223 K and then aged at 623 K .

The model structure of the ω-phase (de Fontaine \& Buck, 1973) is shown in perspective in Fig. 1(a), and as a projection on the (101) plane in Fig. 1(b). A typical electron diffraction pattern from the specimen showing [10 $\overline{1}]$ symmetry is shown in Fig. 1(c). The arrows in Fig. 1(a) indicate the direction of projection of atoms on the ($10 \overline{1}$) plane. As can be seen in Figs. $1(a)$ and $1(b)$, the black and shaded dots represent the atoms in the upper and lower planes and atoms in the β-phase alloy (b.c.c.) have the stacking sequence $A B C A B C \ldots$ along the [$\overline{1} 2 \overline{1}]$ direction, if the double layers of the (101) plane are taken into account. By displacement of atoms B and C in the directions $\pm[111]$ through a distance $\pm a(3)^{1 / 2} / 12$ (represented by arrows in Fig. 1b), the stacking sequence becomes AIAIAI... and the ω-phase is produced. It is assumed that the unit cell of the ω-phase has lattice constants three times those of the β-phase, namely $3 a=3 b=3 c=9.855 \AA, \alpha=\beta=\gamma$ $=90^{\circ}$, and also that the unit cell contains only Ti atoms, in conformity with the experimental results of Hickman (1969) that the ω-phase has fewer Mo atoms. Four variants of the ω-phase were produced by displacements to the $\pm[111], \pm[\overline{1} 1 \overline{1}], \pm[\overline{1} 11]$ and $\pm[111]$ directions, and are denoted by $\omega_{1}, \omega_{2}, \omega_{3}$ and ω_{4}, respectively.

Calculations were carried out using the following conditions: acceleration voltage $=200 \mathrm{kV}$; incidentbeam direction $=[10 \overline{1}] ;$ number of excited waves $=$ 8192 (including pseudoreflections caused by the large unit cell); no absorption of electron waves in the specimen. The elongation of the diffraction spots in Fig. 1(c) may be due to the shape of the ω-phase, and therefore the effect of this elongation was ignored.

3. Results and discussion

Electron diffraction patterns from crystals of the ω-phase with thicknesses of 14 and $140 \AA$ and of [$10 \overline{1}$] symmetry were calculated. $14 \AA$ is about six times the spacing of the ($10 \overline{1}$) plane of the β-phase. The results show that the forbidden reflections do not appear at a thickness of $14 \AA$ whereas they do appear at a thickness of $140 \AA$. This is due to dynamical scattering of electrons in the thicker crystal.

Since the incident beam is in the [$10 \overline{1}]$ symmetry direction, the amplitudes of the $h k l$ and $\overline{h k l}$ diffracted waves are the same. The 25 diffracted beams shown in Fig. 2 and the 1/3 444 diffracted beam are discussed in this paper, and for convenience of illustration of the amplitude-thickness curves, the diffracted beams shown in Fig. 2 are classified into six groups A, B, C, D, E and F. Fig. 3 shows the dependence of the amplitudes of the forbidden reflections upon the thickness of the ω_{1}-phase, whose amplitudes are calculated for unit incident-beam intensity. As can be secn in Fig. 3 (B, C and E), the intensities of the $2 / 3 \overline{1} 2 \overline{1}, 1 / 3 \overline{1} 2 \overline{1}$ and 121 diffracted beams are of the order of 10^{-5} for thicknesses of 75 , 30 and $45 \AA$, respectively. For the other beams the same order of magnitude of intensity was obtained

Fig. 1. (a) Relation between the β-phase and the ($10 \overline{\mathrm{I}}$) plane. (b) Two-dimensional atom position projected on the (10T) plane. (c) Electron diffraction pattern from an as-quenched $\mathrm{Ti}-14 \mathrm{wt} \%$ Mo alloy.
for thicknesses less than $10 \AA$. These results suggest that the forbidden reflections appear when the thickness of the ω_{1}-phase is greater than $75 \AA$. The amplitudes of these diffracted beams increase gradually and then decrease with increasing thickness of

Fig. 2. Classification of electron diffraction spots.

Fig. 3. Calculated amplitudes of the forbidden reflections from the ω_{1}-phase.
the ω_{1}-phase. The above discussion for the ω_{1}-phase can be applied to the ω_{2}-phase by changing the indices from $h k l$ to $\bar{h} k \bar{l}$. In the case of this incident-

Fig. 4. Cross section of the β-phase containing the ω_{1}-phase slice.

Fig. 5. Calculated amplitudes of the characteristic spots for the model specimen (Fig. 4).
beam direction, the diffraction patterns for the ω_{3} and ω_{4}-phases are the same as for the β-phase, because the displacement of the atoms to form the $\omega_{3}-$ and ω_{4}-phases cannot be detected in this orientation, and the projected structure becomes almost the same as that of the β-phase.
Fig. 4 shows the cross section of the model structure of a β-phase containing the ω_{1}-phase slab of thickness $20 \AA$. Fig. 5 shows the variation of amplitudes against the depth measured from the top surface of the model specimen. The characteristic spots $2 / 3 \overline{1} 2 \overline{1}, 1 / 3 \overline{1} 2 \overline{1}, 2 / 3111$ and $1 / 3141$ appear at $90 \AA$ in depth and their amplitudes increase rapidly, especially the amplitudes of the $2 / 3 \overline{1} 2 \overline{1}$ and $1 / 3 \overline{1} 2 \overline{1}$ diffracted waves, which show a noticeable increase in comparison with the behavior shown in Fig. 3. This seems to be due to the effect of scattering in the top β-phase. However, the increments of the amplitudes of the characteristic reflections become small at a depth larger than $110 \AA$. These results suggest the following two facts. Firstly, the amplitudes of these characteristic spots are excited only in the ω_{1}-phase and even after passing through the ω_{1}-phase they still increase in the bottom β-phase. Secondly, even when the ω_{1}-phase is only a few ångstroms in thickness it

Fig. 6. Behavior of the amplitude of the $\overline{1} 0 \overline{1}$ wave.
may produce noticeable intensity in these four diffracted beams. These characteristics do not change even when the ω_{1}-phase slab of thickness $20 \AA$ is located at depths of $\frac{1}{4}, \frac{1}{2}$ and $\frac{3}{4}$ of the total thickness of the β-phase of Fig. 4, with the exception that the amplitude of the $2 / 3111$ beam decreases after entering the bottom β-phase for the case when the ω_{1}-phase is located at a depth of $\frac{3}{4}$ of the total thickness.

Fig. 6 shows cases where the ω_{1}-phase slab in the β-phase is located between the two arrows. By comparing these three figures, it is seen that the amplitude of the $\overline{1} 0 \overline{1}$ diffracted beam at a depth of $200 \AA$ is proportional to the depth of the ω_{1}-phase slab with a proportionality constant of 9×10^{-3}.

Fig. 7. Behavior of the amplitude of the $2 / 3 \overline{\mathrm{I}} 2 \mathrm{~T}$ wave for ω_{1}-phase thicknesses of (a) 20, (b) 40, (c) 60 and (d) $80 \AA$.

Fig. 7 shows the behavior of the amplitude of the $2 / 3 \overline{1} 2 \overline{1}$ beam. The ω_{1}-phase with thicknesses of 20 , 40,60 and $80 \AA$ in the β-phase is located between the two arrows. The amplitude of the beam at a depth of $200 \AA$ (i.e. at the bottom surface of the model specimen) is proportional to the thickness of the ω_{1}-phase with an average proportionality constant 1.6×10^{-2}. In spite of the fact that the amplitude at a depth of $140 \AA$ shown in (d) is smaller than those in (b) and (c), the amplitude at a depth of $200 \AA$ in (d) is larger. It therefore seems to be possible to derive the position and the thickness of the ω_{1} - and ω_{2}-phase slabs in the β-matrix by measuring the intensities of these diffracted beams.

Fig. 8. Cross section of the β-phase containing the $\omega_{1^{-}}$and ω_{2}-phase slabs.

Fig. 9. Electron diffraction pattern from a well aged specimen.

The $1 / 3(444)$ plane of the ω_{1}-phase is the I plane of high atomic density as shown in Fig. 1(b). The corresponding observed diffracted beam is indicated by an arrow in Fig. 1(c). When the ω_{1}-phase of thickness $30 \AA$ is located in the β-phase with a thickness of $200 \AA$, the calculated intensity of the $1 / 3444$ diffracted beam increases rapidly in the ω_{1}-phase but decreases gradually on entering the bottom β-phase. This behavior was independent of the position of the ω_{1}-phase. Also the intensity of the beam at a depth of $200 \AA$ becomes similar to that of the other diffracted beams, in agreement with observations.

In some parts of a specimen, it was observed that there were some overlapping regions of the ω_{1} - and

Fig. 10. Calculated amplitudes of the characteristic and the extra spots for the model specimen (Fig. 8).
ω_{2}-phases in the β-phase (Sukedai, Hashimoto \& Tomita, 1991) which can be expressed by the model shown in Fig. 8. In this model the β-phase containing only $\omega_{3^{-}}$and ω_{4}-phases gives the diffraction pattern for the β-phase only. Thus, if the ω_{2}-phase in their model is replaced by the $\omega_{1}-, \omega_{3}-$ or ω_{4}-phase, the calculated diffraction patterns are similar to those calculated for the model shown in Fig. 4. The extra spots were observed for a specimen aged for 28 h (Fig. 9) in which the well developed ω-phases are superimposed in the manner of the model. Fig. 10 shows the amplitudes of the characteristic and the extra diffraction spots for the model specimen and the arrows indicate the phase boundaries shown in Fig. 8. The intensities of the extra spots appear from the top surface of the ω_{2}-phase and the intensity of the $1 / 3 \overline{1} 0 \overline{1}$ beam is weaker than that of the $2 / 3 \overline{1} 0 \overline{1}$ beam. This tendency does not change with the position of the $\omega_{1}-\beta-\omega_{2}$ sandwich at depths of $\frac{1}{3}, \frac{1}{2}$ and $\frac{2}{3}$ of the total thickness. This does not agree with the experimental result shown in Fig. 9 and it seems to be due to the difference in the number and modes of the sandwich realized in the specimen. There are also some intensity asymmetries in $h k l$ and $\bar{h} k \bar{l}$ in Fig. 10.

This may be due to differences in the superposition sequence of ω_{1} - and ω_{2}-phases.

The authors thanks are due to Mrs Y. Li for her help in taking the photograph (Fig. 9) and to Dr M. J. Whelan, FRS, for reading the manuscript.

References

Cowley, J. M. \& Moodie, A. F. (1957). Acta Cryst. 10, 609619.

Fontaine, D. de \& Buck, O. (1973). Philos. Mag. 27, 967-983.
Fontaine, D. de, Paton, N. E. \& Williams, J. C. (1971). Acia Metall. 19, 1153-1162.
Frost, P. D., Parris, W. M., Hirsch, L. L., Doig, J. R. \& Schwartz, C. M. (1954). Trans. Am. Soc. Met. 46, 231-251.
Goodman, P. \& Moodie, A. F. (1974). Acta Cryst. A30, 280-290.
Hickman, B. S. (1969). Trans. Metall. Soc. AIME, 245, 13291336.

Marcus, R. B. \& Sheng, T. T. (1983). Transmission Electron Microscopy of Silicon VLSI Circuits and Structures, pp. 19-26. New York: John Wiley.
Sass, S. L. (1972). J. Less Common Met. 28, 157-173.
Sukedai, E. \& Hashimoto, H. (1989). EMAG-MICRO89 London, No. 98, pp. 371-374.
Sukedai, E., Hashimoto, H. \& Tomita, M. (1991). Philos. Mag. A, 64, 1201-1208.

Nitro-Nitrito Linkage Photoisomerization in Crystals of Pentaamminenitrocobalt(III) Dichloride

By Mari Kubota and Shigeru Ohba*
Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3, Kohoku-ku, Yokohama 223, Japan

(Received 20 January 1992; accepted 8 April 1992)

Abstract

Photoisomerization in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right] \mathrm{Cl}_{2}$ has been investigated by single-crystal X-ray diffraction: $M_{r}=$ 261.0, monoclinic, $C 2 / c, Z=4, D_{x}=1.83 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\operatorname{Mo~K\alpha })=0.71073 \AA, \quad \mu=2.35 \mathrm{~mm}^{-1}, \quad F(000)=$ 536, $T=116 \mathrm{~K}$. Before illumination with an Xe lamp, ($\mathrm{I} a$),$a=10.176$ (2),$b=8.692$ (1), $c=10.746$ (2) \AA, $\beta=95.45$ (2) ${ }^{\circ}, V=946.2$ (3) $\AA^{3}, R=0.028$ for 1263 observed unique reflections. After illumination with an Xe lamp for 40 min , ($\mathrm{I} b$), $R=0.042$ for 1216 reflections. After illumination for 150 min , (IC), $R=$ 0.062 for 730 reflections. Variation of the lattice constants was less than 0.6%. Nitrito coordination, induced by photochemical reaction, was detected on

[^1]0108-7681/92/050627-06\$06.00
electron density maps and the populations were refined to (Ib) 8.9 (5)\% and (Ic) 14.5 (8)\%. Thermodynamical linkage isomerization in $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}-\right.$ $\mathrm{ONO}] \mathrm{Cl}_{2}$, (II), was reinvestigated based on the X-ray intensity data measured by Grenthe \& Nordin [Inorg. Chem. (1979), 18(7), 1869-1874]. Linkage isomerization occurs in the original plane of NO_{2}^{-}in (I). However, the nitro plane is inclined during isomerization of (II) because of steric hindrance to rotation in the original plane.

Introduction

The nitrite ion is ambidentate and coordinates to metal atoms via an oxygen, nitrogen or two oxygen atoms (Finney, Hitchman, Raston, Rowbottom \&
(C) 1992 International Union of Crystallography

[^0]: (c) 1992 International Union of Crystallography

[^1]: * To whom correspondence should be addressed.

